Charge transport in azobenzene-based single-molecule junctions.
نویسندگان
چکیده
Azobenzene-derivative molecules change their conformation as a result of a cis-trans transition when exposed to ultraviolet or visible light irradiation and this is expected to induce a significant variation in the conductance of molecular devices. Despite extensive investigations carried out on this type of molecule, a detailed understanding of the charge transport for the two isomers is still lacking. We report a combined experimental and theoretical analysis of electron transport through azobenzene-derivative single-molecule break junctions with Au electrodes. Current-voltage and inelastic electron tunneling spectroscopy (IETS) measurements performed at 4.2 K are interpreted based on first-principles calculations of electron transmission and IETS spectra. This qualitative study unravels the origin of a slightly higher conductance of junctions with the cis isomer and demonstrates that IETS spectra of cis and trans forms show distinct vibrational fingerprints that can be used for identifying the isomer.
منابع مشابه
Break junction under electrochemical gating: testbed for single-molecule electronics.
Molecular electronics aims to construct functional molecular devices at the single-molecule scale. One of the major challenges is to construct a single-molecule junction and to further manipulate the charge transport through the molecular junction. Break junction techniques, including STM break junctions and mechanically controllable break junctions are considered as testbed to investigate and ...
متن کاملTemperature dependent charge transport across tunnel junctions of single-molecules and self-assembled monolayers: a comparative study.
In this work we present a comparative study of the temperature behavior of charge current in both single-molecule transistors and self-assembled monolayer-based tunnel junctions with symmetrical molecules of alkanethiolates functionalized with a ferrocene (Fc) unit. The Fc unit is separated from the electrodes with two equal alkyl chains of enough length to ensure weak coupling of the Fc unit w...
متن کاملPromising anchoring groups for single-molecule conductance measurements.
The understanding of the charge transport through single molecule junctions is a prerequisite for the design and building of electronic circuits based on single molecule junctions. However, reliable and robust formation of such junctions is a challenging task to achieve. In this topical review, we present a systematic investigation of the anchoring group effect on single molecule junction condu...
متن کاملElectric-Field Control of Interfering Transport Pathways in a Single-Molecule Anthraquinone Transistor.
It is understood that molecular conjugation plays an important role in charge transport through single-molecule junctions. Here, we investigate electron transport through an anthraquinone based single-molecule three-terminal device. With the use of an electric-field induced by a gate electrode, the molecule is reduced resulting into a 10-fold increase in the off-resonant differential conductanc...
متن کاملDynamic current suppression and gate voltage response in metal-molecule-metal junctions.
We critically re-examine conductance in benzenedithiol (BDT)/gold junctions using real-time DFT simulations. Our results indicate a powerful influence of the BDT molecular charge on current, with negative charge suppressing electron transport. This effect occurs dynamically as the BDT charge and current oscillate on the femtosecond time scale, indicating that a steady-state picture may not be a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 109 22 شماره
صفحات -
تاریخ انتشار 2012